On Future War

This post is about the future of military technology and war strategy in a world of informatization, resource scarcity, and renewed ideological turbulence. Be forewarned: while some of what I write here corresponds to the conventional wisdom, some is well off the beaten tracks, and some will sound like it’s straight out of a sci-fi dystopia.

The post-Cold War era was, for many, a lovely time. As the Soviet Union imploded, so did the risks of mutual destruction in a global thermonuclear war. At the end of history, the conventional wisdom now regarded rogue states, loose nukes, and transnational terrorists as the main challenges to the brave new world created by globalization. As Thomas P.M. Barnett argued in The Pentagon’s New Map, the primary challenge faced by the US military would no longer consist of planning for a traditional Great Power war with its erstwhile socialist foes, Russia and China. Instead, it would be wiser to focus on policing and “civilizing” the equatorial belt of instability known as the “Gap” – the impoverished, conflicted region stretching roughly from Central America through Africa and the Eurasian Dar al-Islam – in cooperation with fellow stakeholders in stability like Europe, China, India, Russia, and Japan.

However, one of the main assumptions of this blog is that this state of global affairs will not last, if it was ever really valid in the first place. First, many people in the pre-1914 era – an older golden age of globalization and shared international values – also believed that technical progress and increasing interconnectedness had made war obsolete, or at least unbearably damaging if it were to continue for any longer than a few months. They would be disillusioned by the First World War, the genesis of modern total warSecond, the international system today is unstable amidst the shifting winds of change, characterized as it is by a faltering US hegemon beset by challengers such as an expansionist Irana resurging Russia, and a robust China intent on returning to its age-old status as the Celestial Empire. Third, peak oil production, probably reached in 2008, is but one of the first harbingers of our Limits to Growth predicament – in the decades to come, the world’s grain belts will begin to dessicate, high-quality energy sources will become depleted, and ever more human effort under the knout of state coercion will have to be requisitioned to sustain industrial civilization against the mounting toll of energetic shortages, climatic disruption, and system instability.

The weak states will fail, while the strong – the US, China, Russia, France, Turkey, Japan, Germany, etc – will bunker down within their new fortress-empires, both physically and psychologically. Facing social pressures, economic decline, and mounting waves of eco-refugees, their philosophers will invent new totalitarian ideologies, defined by a reaction against rationalism. It is not unreasonable to posit that their adherents will take over at least one of the major poles in the future international system, thus creating the specter of the Last War of industrialism. I will look at future war based on these fundamental assumptions: the return of history, the harsh realities of the geopolitics of scarcity industrialism, and the system strains and rising chaos that will form the prelude to global collapse.

Before we start, a few disclaimers. I have no professional or academic knowledge of military affairs, just a sense of curiosity and propensity to look ahead. Hence don’t be surprised if some ideas are totally off the ball to those in the know (though I would like to point out that the two best forecasters of what the next war would be like prior to 1914 happened to be amateurs – Ivan Bloch, a Warsaw financier, and Friedrich Engels, the social theorist). Second, I won’t be making any specific predictions – just a general overlook. Third, I won’t only be considering the low intensity conflicts typical of today, such as the unending war against terrorism or “gunboat” / policing actions like the invasion of Iraq. The prospect of a total war, fought between the leading military-industrial Powers (e.g. the US, China, Russia, etc), is treated as a serious scenario.

Finally, perhaps the most necessary disclaimer is that I do not personally wish for World War Three – although I enjoy perusing weapon system specs and reading historical narratives on the subject as much as the next person, I’m a much bigger fan of All Quiet on the Western Front (Erich Maria Remarque) than of Germany and the Next War (Friedrich Von Bernhardi). And now that that’s gotten out of the way, let’s return to the future…

I have no professional or academic knowledge of military
affairs, just a sense of curiosity and propensity to look ahead. Hence don’t be surprised if
some ideas are totally off the ball to those in the know. Secondly, I won’t be making any
specific predictions – just a general overlook.

The Military Balance, Today and Tomorrow

The primary reality of the current military situation is US military dominance – it is the world’s leading superpower possessing a full panoply of military capabilities unmatched by any other Great Power. In particular, it has 75% of the world’s military naval tonnage (including almost all the aircraft carrier groups and amphibious ready groups) backed up by the most advanced space surveillance system and C4ISR capabilities. As such, US power projection capabilities are second to none. The US Navy is one of the three pillars of the the system of “neoliberal internationalism” supported by Pax Americana (the others are cheap oil and the $), whose strategic value was demonstrated by the takeover of Iraq and its relatively little-exploited oil reserves in a likely futile bid to postpone peak oil.

The US is also at the forefront of the Revolution in Military Affairs (RMA) – a theory of future war placing stress on concepts such as robust networking; deep systems integration; precision strikes; high-bandwidth p2p information sharing; shared battlespace awareness; self-synchronization; space-based surveillance; decentralized C&C; swarming, etc (see Power to the Edge by Alberts and Hayes, 2003). The surveillance, precision, and optimization capabilities unlocked by its interconnectedness and dominance of space give the US military a power multiplier unparalleled by that of any other nation, allowing it to defeat non-networked forces fighting on linear principles with ease.

However, US military power is afflicted by a number of problems and adverse trends – a defense death spiral, an uncertain fiscal future, the development of asymmetric and “assassin’s mace” counters, and challenges from the Chinese industrial powerhouse and a resurgent, energy-rich Russia. Thus I am very skeptical as to the US ability to keep its decisive military lead far beyond 2020.

By that time, the US would have very likely been overtaken by China in terms of real GDP, which would by then possess an extremely potent technical-industrial base.  China’s mercantile ambitions in a world of “scarcity industrialism” (characterized by aggressive competition for resources), in tandem with the precipitous decline of American power, will give China the impetus to effect a rapid military “breakout” in an attempt to catch up to and surpass US capabilities. China used the 2000′s to build up a “string of pearls” network of naval bases on its offshore islands and friendly nations like Myanmar, Bangladesh, Sri Lanka, and Pakistan so as to be able to protect its long, vulnerable coast and energy supply routes. It is now in the midst of a massive naval expansion that could see the PLA Navy surpass the USN by number of military vessels within the decade. Furthermore, the conventional wisdom of Chinese technological inferiority is gradually becoming outdated thanks to its efforts in military R&D and industrial espionage. A recent RAND study indicated that China is already be able to establish air superiority over Taiwan in the event of a hot war over the straits, and elements of the PLA believe they will be able to pose a direct military challenge to the US by 2020.

While Russia’s GDP cannot conceivably approach that of the US on any meaningful timescale, Kremlin dreams of economic modernization may yet be realized, and in any case Russia is fully capable of leveraging its energy wealth to reconstitute and modernize its dormant military-industrial potential. As of today, it is implementing a major military reorganization and modernization, most recently displayed by its demonstration of the PAK-FA “Firefox” prototype, the first 5th-generation fighter produced outside the US. Russia’s fundamental energy and food security, as well as its comparative immunity to the malign effects of climate change (it will actually benefit from AGW, at least for moderate rises in temperature) will enable it to achieve the high per capita surpluses necessary to compete effectively with otherwise larger and wealthier blocs.

India’s socio-economic and human capital lags China’s by several decades. However, it does enjoy better ties with both Russia and the West, which can be and are translated into military-technical cooperation. Assuming it can stave off stagnation and Malthusian crisis, it may evolve into a potent check on Chinese expansion into the Indian Ocean, especially if allied with Japan and Korea in the east. Speaking of which, Japan is technologically advanced and is acquiring potent naval, space and ABM capabilities under US patronage. However, the aging of its population and its almost total dependence on imported energy and raw materials severely curtail its ability to play an independent role, and its strategic vulnerability means that Japan will be eclipsed as soon as the PLA Navy equalizes with the Japanese Maritime Self-Defense Force.

The European Union can become a major military power, but only if it acquires a common foreign policy and streamlines military procurement and R&D. However, in the long-term meaningful European integration is unlikely to survive under the strain of economic stagnation, energy insecurity, rapid aging, and collapsing welfare states. Brazil will achieve military hegemony in South America and the South Atlantic, but will remain a regional power with few global ambitions.

Finally, the nuclear weapons sphere is dominated by the US and Russia, both of which maintain a robust nuclear triad with thousands of warheads. Although Russia’s capability degraded after the Soviet collapse, it is now being revamped at an accelerating rate (as is the rest of its military). Though it is decisively outmatched by the US and by now probably also China in conventional terms, as long as Russia retains its vast nuclear arsenal, it also retains full strategic immunity from encroachment by China or other resource-hungry Powers (at least as long as the latter do not have access to effective BMD). After the two nuclear superpowers come France, Britain, China, and Israel, each possessing hundreds of warheads and a more limited set of delivery systems. Finally, although formally against nuclear weapons, there exist “virtual nuclear weapons states” like Japan, Germany and Italy that could, if they embarked on crash programs, build up massive, robust nuclear arsenals within a decade.

The Promise and Peril of BMD

Since the 1950′s, nuclear weapons have been the ultimate guarantors against the resumption of Great Power wars. However, this may cease to be the case a decade or two down the line, when effective ballistic missile defense (BMD) systems are developed. When they become effective and universalized across the world’s Great Powers, the utility of MRBM and ICBM forces – and to a lesser extent, of submarine and strategic bomber nuclear forces – will be severely undermined. The deterrence system based on mutually assured destruction (MAD) that arose during the Cold War will come to its demise, and so will the realist checks on international aggression that emerged out of it.

Today, the US has a commanding lead in BMD technologies, with four mature technologies operational or nearly so (though around two dozen other countries are seriously pursuing BMD programs, with Russia, China, Israel, India, and Japan being particularly advanced). Below I summarize each one, before outlining the course of future developments.

Aegis/Standard Missile-3 (SM-3): Proven anti-satellite system, intercepts ballistic missiles during parts of ascent and descent phases, and is already deployed on 18 USN guided-missiles destroyers and cruisers and 2 Japanese Maritime Self-Defense Force warships.

Terminal High Altitude Area Defense (THAAD): Mobile truck-based system capable of ballistic missile interception in the final midcourse descent and in its terminal phase, both endo and exo atmosphere; it has performed successfully in recent tests.

Patriot Advanced Capability-3 (PAC-3): A terminal-phase intercept system (like the Russian SA-10 / S-300), it has been given the baptism of fire during the Gulf War. It performed poorly, but since then 20 years have passed and it is now far more capable. The system has recently been installed in Kuwait, the UAE, Qatar and Oman, along with BMD-capable USN warships in the Persian Gulf, in a message to Iran.

Ground-based Midcourse Defense (GMD): A fixed, silo-based system for the midcourse phase, as implied by the name. It is a mature technology and installations exist in Fort Greely, Alaska and Vanderburg, California – more than enough to contain any ballistic missile threat from North Korea, and by now perhaps even enough to neutralize China’s “minimal” nuclear arsenal. US attempts to expand it to Central Europe have caused major frictions with Russia - not because Russia actually fears it in a military sense, but because it hopes to use it as a bargaining chip with the US elsewhere.

This array of systems gives the US a multi-tiered, overlapping BMD capability. However, there is pressure for developing boost phase intercept capabilities, because midcourse and terminal interception may need to deal with decoys, MIRV, and other countermeasures. One interesting idea is the Airborne Laser (ABL), which is mounted on a modified Boeing-747 airliner. It can be used to shoot down ballistic missiles in boost phase and even satellites in low-earth orbit. It has recently had its first successful test.

Two common objections to BMD are that it is 1) technologically ineffective – along the lines of “you can’t hit a bullet with another bullet”, and 2) far too expensive to be fielded in quantities sufficient to deter anyone but backwards “rogue nations” like North Korea or Iran. Both are invalid.

Calculating an ICBM’s ballistic trajectory is easy, if you understand Newtonian mechanics, so in theory the interceptor missile doesn’t even need an autonomous guidance system to achieve a kill. In principle, a reliable BMD system was possible even from the 1950′s, albeit it was only under Reagan that the US acquired the strategic focus to begin seriously working on it. (The USSR did have a working BMD system from the 1970′s defending Moscow, though the interceptor missile relied on a nuclear blast to ensure reliability). However, following the end of the Cold War the US dropped its “Star Wars” program, and has since focused on ostensibly easier objectives such as guaranteeing itself from attacks by “rogue states” with emerging long-range missile capabilities. In this it has been successful, with each layer of its global BMD system now predicted to have a kill rate of 90%+.

Now about cost. By far the biggest expense, around 90%, is incurred in the construction of the Missile Defense Ground Environment (MDGE) – the sensors, C&C networks, launchers, maintenance depots, supply chains, etc. The missiles themselves are rather cheap, coming in at 10% or less. Therefore, once the MDGE is ready, “thickening” the missile screen is relatively easy and inexpensive. So once the US has established a firm shield against nations like North Korea, it would then, in principle, be able to effect rapid “breakout”, in which it massively increased the numbers of missile interceptors to make itself invulnerable to China or even Russia before they can respond by increasing by increasing their offensive missile forces. (This calculus also applies in reverse: building the Offensive Missile Ground Environment (OMGE), such as airfields for bombers, SSBN’s for SLBM’s, and silos for ICBM’s, is much more expensive than the actual missiles).

This implies that even with today’s BMD technologies, creating a massive, multi-layered missile shield that could render a Russia-sized nuclear arsenal is neither infeasible nor prodigiously expensive for the US. And again, I should emphasize that this is not limited to the US. More than two dozen countries are seriously pursuing missile defense, either directly or as partners. Many of them should start coming online by 2015, and will have proliferated to the extent of making traditional ICBM’s largely obsolete by 2025.

The other two legs of the nuclear tripod, SSBN’s and strategic bombers, will then have to shoulder more of the burden. No wonder that Russia is so desperate to get the advanced Bulava SLBM working, as well as resuming production of the Tu-160 strategic bomber and developing the next-generation PAK DA. The US has much more ambitious goals in mind with the concepts of a “Blackswift” hypersonic global strike bomber… which although repeatedly canceled, refuses to really die. Needless to say, China too is working along similar lines, albeit they yet have major technological hurdles to overcome.

But BMD will continue to evolve too. There’s the rapid developments in laser technology, which are already becoming militarily usable and might become the primary defense system used by warships. Railguns may become operationally deployable by 2020 in the USN. Finally, there are even more exotic concepts such as the Russian “plasma shield“:

[The plasma shield] action is based on focusing beams of electromagnetic energy produced by laser or microwave radiation into the upper layers of the atmosphere… A cloud of highly ionized air arises at the focus of the laser or microwave rays, at an altitude of up to 50 kilometers. Upon entering it, any object – a missile, an airplane, is deflected from its trajectory and disintegrates in response to the fantastic overloads arising due to the abrupt pressure difference… What is fundamental in this case is that the energy aimed by the terrestrial components of the plasma weapon – lasers and antennas – is concentrated not at the target itself but a little ahead of it. Rather than “incinerating” the missile or airplane, it “bumps” it out of trajectory.

This system would have a longer range than the ABL, be much easier to aim, and cost much less per shot. So the following defensive system can be envisioned as 2040 approaches. Pulse lasers mounted on mobile bio-mechanical constructs providing near-perfect point defense powered by space-based solar power and optimally coordinated by an automated ground environment, and further reinforced by an “iron phalanx” of railguns and older GBI missiles to add redundancy.

Now at this point you may be forgiven for thinking that I’m beginning to go crazy, or have read too much sci-fi. But that is inevitable when projecting as much as 30-40 years ahead. I am fairly confident in the earlier predictions that the maturation of BMD technologies will make the ICBM increasingly irrelevant within the next two decades. Obviously, there is no certainty whatsoever over DEW-based missile defense, the plasma shield, or especially the military biomechanical constructs. But neither are they totally out of the pale based on historical experience and the research and technology trends in place today.

The Third RMA

Here is a non-technical, almost philosophical definition of the ongoing Revolution in Military Affairs (Strategy and the RMA From Theory to Policy by Metz & Kievit).

During the “First Wave” of human development, production was primarily agricultural, so war sought to seize and hold territory. During the “Second Wave,” industrial production dominated, so war was often a struggle of attrition where belligerents wore down their enemy’s capacity to feed, clothe, and equip armies. Following this logic, “Third Wave” warfare will seek to erode or destroy the enemy’s means of collecting, processing, storing, and disseminating information. Since the more dependent an enemy is on information the more vulnerable it would be to information warfare, this would seem to have potential as a counter to an advanced, peer threat.

As with most spheres of the human existence – the economic base, the class structure, the status of women, etc – the nature of warfare is intrinsically tied to the environment it is fought in. Back when humanity was one with the biosphere, primitive wars were fought within territorially small spaces for a particular ecological niche and were characterized by incredible levels of per capita violence. In the Malthusian, pre-industrial phase of human civilization, war sought to gain territory because in the absence of long-term industrial growth, controlling land and the taxable peasants it supported were the only means of extracting the wealth to support a ruler’s megalothymia (lavich courts, powerful armies, etc). Industrial warfare was sustained by industrial production, so undercutting its material base while expanding your own lay at the heart of any war-winning grand strategy: blockading Imperial Germany’s access to phosphates, bombing Nazi factories to curb the (late and belated) growth of its total war economy, the US containment strategy of economic pressure on the USSR during the Cold War. However, the principles of the First Wave remained valid – actually conquering territory by putting boots on the ground remained indispensable, whereas industrialism provided the means.

From the 1970′s, the world has been on an exponential runway into the noosphere, embodied in the cyberspace that is overspreading the biosphere, just as the biosphere once overspread the geosphere, the bare rock bones of the Earth. This environment is based on information and its creation, manipulation, and destruction, and it will form the defining environment in which future wars are fought. Below is a summary of the defining features of network-centric warfare.

Contrary to most theoretical writings on the subject, the growing significance of information does not mean that the industrial or territorial phase is diminishing into insignificance. The main reason for the surgical cleanliness with which the US won its wars with Iraq was because of the sheer mismatch between a power at the forefront of RMA exploitation and one still firmly rooted in the older industrial age of centrally-coordinated movement and mass (during the Gulf War, the Iraqi military was cripplied early on by the neutralization of its few C&C nodes) – and US network-centric capabilities continue advancing at a blistering pace. As Lt Gen Harry Raduege of the Defense Information Systems Agency noted:

Net-centric warfare’s effectiveness has greatly improved in 12 years. Desert Storm forces, involving more than 500,000 troops, were supported with 100 Mbit/s of bandwidth. Today, OIF forces, with about 350,000 warfighters, had more than 3,000 Mbit/s of satellite bandwidth, which is 30 times more bandwidth for a force 45 percent smaller. US troops essentially used the same weapon platforms used in Operation Desert Storm with significantly increased effectiveness.

However, a total war between two powers exploiting the RMA will prove to be as much a test of systems resilience as previous total wars – not only of their information systems, but of their industrial systems (their resilience, hardening, dispersion, level of optimization of physical throughput, etc) and their agricultural(-industrial) systems. Furthermore, the coercive means for mobilizing the home front opened up by the emerging possibilities of “cybernetic totalitarianism” (electronic surveillance, universal databases, pattern recognition software, ubiquitous propaganda, sousveillance, ultra high-bandwidth wireless networks, etc) are historically unprecedented in their totality. The total wars fought in the cybernetic age have the potential to be far more total than anything seen before. But more on the social aspects of future war later…

The RMA will continue and possibly accelerate, in particular the network-centric warfare component. To repeat the points made above, this basically involves connecting all components of a modern army so as to improve every component’s situational awareness, optimize decision-making and multiply the effective strength even of small units. This goes in tandem with continuing improvements in precision technology, as striking particularly vulnerable enemy nodes is much more damaging than striking with a bigger tonnage but not aimed at anything in particular. All in all, military forces will become much more robust, resilient and intelligent (thanks to the innate crowd wisdom of a more democratic / dispersed decision-making process). Obviously, as Iraq as early as 1991 showed, traditional conventional “linear” armies that are poorly networked will stand as little chance against a well-supplied networked force as the clumsy feudal armies against the Mongols or the Poles against the Nazis in 1939.

However, there are two counters to a networked force – another good networked force, or rather paradoxically, a technologically retrogade dug-in fighters with just AK’s and RPG’s – as the Chechens showed in 1994-96 and Hezbollah demonstrated in 2006, even relatively small numbers of dedicated fighters armed with old-school weapons can blunt the advance of a modern mechanized force. Indeed, their power can become terminal if they have access to EMP’s or the means of taking out or corrupting networked satellites, drones and other surveillance/information systems. A networked force whose computers no longer work is just another ordinary rifle army, presumably also quite a demoralized one.

As Charles Perrow of the National Defense University noted in May 2003:

Our incipient NCW [network-centric warfare] plans may suffer defeat by [adversaries] using primitive but cagey techniques, inspired by an ideology we can neither match nor understand; or by an enemy who can knock out our vulnerable Global Positioning System or use electromagnetic pulse weapons on a limited scale, removing intelligence as we have construed it and have come to depend upon. Fighting forces accustomed to relying upon downlinks for information and commands would have little to fall back upon.

As such, in the case of absolute war between two technologically advanced blocs, the outcome will be determined by the outcomes between these two elements, the hi-tech NCW / “networked” element and the low-tech 4GW / “guerilla” element. However, these elements will inevitable lose their distinctions. The “guerillas” will themselves become networked, while the “networked” will adopt “guerilla” tactics in search of a new, optimal equilibrium. Those who are slow to find this equilibrium, relying either a) too much on small sized networked forces, which although very robust are vulnerable to attacks on critical nodes which will render them helpless, or b) on very low-tech forces that can be annihilated easily by hi-tech forces, will lose.

Weapons of Network-Centric Warfare

Munitions. Three types of ordinance will increase in importance: EMP’s, precision weapons, and fuel-air bombs. Though military C&C nodes can be (and are) hardened against EMP strikes (though the effectiveness of this hardening hasn’t yet been tested under fire), doing the same for the civilian infrastructure is prohibitively expensive. All it takes is one nuclear explosion high up in the atmosphere, and an entire continent can go black. (Needless to say, this will severely affect the enemy’s military-industrial potential). Precision weapons can be used to destroy key enemy C&C nodes without excessive expenditures of energy and firepower, albeit they are no panacea because of the concurrent trends towards dispersion.

In future wars, soldiers and industry will be digging in to conceal themselves from ever better surveillance and much of the fighting will take place in urban areas; fuel-air bombs, or thermobaric weapons, are near optimal when used against tunnels, bunkers, and enclosed spaces. Using nanotechnology, they will be miniaturized into lighter artillery munitions and grenades, giving even low-level platforms like individual soldiers immense destructive power.

Naval. As of today, the aircraft carrier appears to be going the way of the battleship of the 20th century. It appears to be a huge liability – it’s size and profile are so big that it is simply going to get saturated by enemy firepower (supercavitating torpedoes, hypersonic anti-ship cruise missiles), no matter it’s defences – the priority will be to avoid being seen. However, the development of all-electric destroyers and cruisers hosting FEL weapons and railguns – especially if they were to be mated with a source of space-based solar power (and assuming said source can be defended) – may mean that the aircraft carrier will remain viable on some level as long as it is protected by its retooled carrier battle group (CVBG). At the very least, it will remain very useful for the kind of gunboat racketeering we are likely to see the Great Powers employ towards militarily-weak, resource-rich nations in the coming age of scarcity industrialism.

Nonetheless, the dominant trend at sea will be towards smaller, lighter, stealthier craft, – increasingly equipped with advanced weapons, optimized for swarm tactics, and preferably submersible. They will be the bane of maritime supply routes, if not the the retooled aircraft carrier battle groups that will be providing fixed point defense (the “iron phalanx”) and power projection capabilities (via VSTOL scramjet drones).

The ekranoplan, a Soviet chimera combining the sea-hovering effects of a hovercraft and the speed of a conventional plane, is likely to make its debut as a new major component in naval warfare. It is very fast, very suitable for transport and can carry a large amount of missiles and other ordnance. Flying low, just about the water, it is largely invulnerable to radar. It will be able to interdict supply routes and launch nuclear-tipped cruise missiles from off the coast of a hostile Power.

Space. Due to the spread of satellite-dependent network-centric warfare, control of space will become ever more important: for communications, surveillance, and electronic spying in low-earth orbit (LEO); comms and navigation constellations like GPS, Glonass, and Galileo in medium-earth orbit (MEO); and Beidou and systems like the US global infrared launch-detection capability in geostationary orbit (GEO).

[Source: Space Security 2007].

Furthermore, it is possible that in the coming decades of resource depletion, space will acquire a new strategic significance because of its potential for space-based solar power (SBSP). The specs indicate that though initial investments will have to be very substantial (though even they can be substantially reduced by constructing a space elevator), the payoffs will be tremendous. Since the Sun shines all the time, space-based solar has both much higher flux and can provide base load power, unlike solar photovoltaics on Earth, the system’s ultimate EROEI will be much higher and may constitute the new energy source to which industrial civilization will try to transition to from its current, unsustainable hydrocarbon dependence. From the National Space Society:

The magnitude of the looming energy and environmental problems is significant enough to warrant consideration of all options, to include revisiting a concept called Space Based Solar Power (SBSP) first invented in the United States almost 40 years ago. The basic idea is very straightforward: place very large solar arrays into continuously and intensely sunlit Earth orbit (1,366 watts/m2), collect gigawatts of electrical energy, electromagnetically beam it to Earth, and receive it on the surface for use either as baseload power via direct connection to the existing electrical grid, conversion into manufactured synthetic hydrocarbon fuels, or as low-intensity broadcast power beamed directly to consumers. A single kilometer-wide band of geosynchronous earth orbit experiences enough solar flux in one year to nearly equal the amount of energy contained within all known recoverable conventional oil reserves on Earth today.

Obviously, this will have great military implications, because armies and navies will be transitioning from fossil fuels to electrical sustenance, because of hydrocarbon depletion, better electric battery technology, and the new emphasis on DEW weapon systems. The energy received by the SBSP installations can be converted to microwave radiation and transmitted down to any military antennas within range.

However, the concurrent proliferation of Earth-based anti-satellite capabilities (blinding by lasers, DEW weapons, etc) will make space denial, in most cases, much easier than space control. The BMD technologies I talked about are essential elements of space denial, since Powers possessing them are capable of blasting satellites out of LEO (the US, Russia, and China have demonstrated the capability) – and with them go the best reconaissance, MASINT, and SIGINT. Furthermore, once you destroy a few satellites, there could be a runaway effect called an ablation cascade which could rapidly clog up the lower-Earth orbits and close it off to human exploitation for a few centuries. Reconaissance would shift towards UAV’s and perhaps more exotic inventions like tiny robotic insects and “nanodust” (not making this up, take a look at DARPA’s plans, the Pentagon’s mad science division that gave us the Internet).

(For now, higher orbits remain safe, such as where GPS resides, though they remain vulnerable to jamming. If successful, the satellite becomes useless. One idea suggested by George Friedman is to construct heavily-defended “Battle Stars” in geosynchronous orbit and move C&C into deep space so that during a war they can continue to direct military forces down below even if (especially if) other satellites and communication networks are incapacitated or destroyed by kinetic kill vehicles, pulsed lasers, EMP’s, particle beam weapons, and whatever other forms of anti-satellite weapons are developed).

There are other exotic avenues of exploration such as wars for the lunar surface, Lagrange points, and over geoengineering projects in space such as a solar sunshade. I do not foresee these becoming overly relevant to military strategy until 2050.

Air ForceThe fighter will be displaced by UAV’s, as it limits the range of manoeuvres it can do, and besides, a computer with the appropriate software will execute any operation much better than a human (g forces aren’t an issue with unmanned vehicles). By the 2020′s, we will see the first serious hypersonic scramjet drone prototypes, which will be far more capable of penetrating the thickening air defense shields which will by then be proliferating around the world. Though they will have direct control links, they will also contain autonomous AI programs in case their connection with the human controlled is destroyed or interrupted.

AWACS aircraft will remain essential, providing massively boosted radar coverage and stealth to the friendly aircraft around it. In the case of a big war by the 2040′s, air forces are likely to be made up of: 1) a core of hypersonic strategic bomber drones with advanced armaments including nuclear weapons, 2) a few legacy 5th generation fighters, 3) many cheap, lightly-armed reconaissance UAV’s, and 4) commercial airliners converted to serve as ABL’s, AWACS, and military transports.

Army. Tanks will probably survive in a similar form to today, but they will become smaller, lighter, stealthier, more modular and will lose their human presence. Their overall utility is going to decline in the face of advances in RPG’s; see Chechnya-Russia or Hezbollah-Israel, where small units operating from urban or entrenched positions were surprising successful at checking armored forces.

The biggest changes will occur at the level of the individual soldier. Below is an illustration of US plans for a Future Force Warrior.

They are going to feature: advanced sensors to keep the body comfortable and at homeostasis; helmets showing real-time maps with positions of goodies and baddies (battlespace awareness), excellent networking capabilities, and firearms integration (so you can shoot around corners or over a ditch without exposing your head); an exoskeleton that increases speed and multiplies your strength; advanced body armor and camouflage. In sum, future warriors will experience what is call “augmented reality” and become cyborgs, making them very effective individual weapons platforms. Their “vision” of the battlefield will converge to that of today’s shoot-em-up video gamer, with the major exception that losing HP will have bad, real-life consequences.

The assault rifle will likely remain the standard infantry weapon, because the prospects of developing effective infantry-level laser or “beam” weapons are unrealistic for the foreseeable future. I recommend something along the lines of the innovative Heckler & Koch G11, which uses caseless ammunition, or the FN 2000, which is a pleasure to handle. The lethality of munitions will increase thanks to the likely development of “smart bullets” and munitions of enhanced explosive power (see above).

Medical technology will become much more advanced, including even the regeneration of spinal tissue, which would heal otherwise disabling wounds. This will cause the casualty : KIA ratio to increase further, since so many wounded would be able to rejoin the action.

Finally, one more interesting military development that we may see within twenty years, once 1) bioengineering advances, 2) the costs of DNA sequencing slip further down the Carlson Curve, and 3) artificial womb-like environments are developed (slated to become realizable within the next five years), it may become possible to build bio-mechanical constructs that combine robot endurance and controllability, with biological flexibility and resilience. Cutting edge research is already incorporating the biological features of many lifeforms, which have been optimized for whatever their tasks by evolutionary eons, for commercial exploitation. The military will surely follow suit.

Cybernetic Reprimitivization

What will the numbers be like? Historically, the number of troops in armies has generally increased. This has usually been accompanied by a) increases in state resources and control and b) newer technologies that give a premium effect when diluted amongst the many rather than concentrated amongst a few (e.g. having lots of gunpowder-using units is better than a few elite, cold-steel cavalry units).

For instance, medieval armies were smaller than classical armies, because knights became key actors during the medieval period and as is well known equipping them cost a fortune. On the other hand, improvements in tactics and gunpowder weapons made heavy cavalry no longer economical and it became a better use of resources to equip more with arquebuses than less with warhorses and heavy armor. For all the talk of the death of the nation-state, the flat world, rise of the multinational corporation, etc, the fact remains that historically the state has never been stronger. Some of the European welfare states take more than 50% of GDP in taxes. This is a level that was before only reached during wartime, e.g. the US in WW2. And before the twentieth century even during warfare this percentage fell well short. So, if even today in peacetime and a liberal world order, some states can milk half of a country’s GDP, what can they achieve in conditions of total war?

Some commentators talk about the huge spiral in weapons costs, which will supposedly make total war far too expensive and lead to economic collapse very soon. Firstly, the exact same arguments were made even in the prelude to WW1. Then, few people realized the sheer productive power of a modern industrial complex turned over completely to military purposes. Secondly, with standardization; mass production levels and economies of scale; and optimization between hi-tech and numbers (see above), weapons and networking costs are going to come down a lot, by an order of magnitude.

Other commentators have voiced the opinion that since the US and other advanced industrial nations have in fact become deindustrialized or “hallowed” out, they will not be able to support big production volumes. However, the extent of this deindustrialization should not be exaggerated. US industrial output by physical volume today is no smaller than it was in 1970, the apogee of its industrial phase; it’s just that since then, the main focus of its development has shifted towards services and technological improvements. Much fewer people now work in manufacturing in the developed nations, but this is primarily because labor has been substituted by capital, not because they are producing less. That is actually a positive development from the point of view of waging total war. Less people in the factories equals more people available for service of a more directly military nature, not necessarily in the frontline but also in logistics, transport, construction, etc. In this respect the US is actually in a better position than, say, China. Even better of in this respect are the most capital-intensive nations, like Japan and Germany (though in practice they are weak because they are unable to guarantee their energy supplies).

Now about how the Armed Forces themselves will change. Basically, everything will be about the optimization between quantity and quality. Today, in the US and many other countries, the premium is on quality, since they only expect quick wars against technologically inferior forces like Iraqis or Chechens or Palestinians, and where big losses are politically unacceptable. However, in a total war, even the best networked forces will suffer attritition and rapid annihilation if the systems they rely on are disabled; after that, how do you continue to fight?

This means that future wars will not necessarily be, as imagined by most commentators, affairs involving small, high-tech elite warriors, as was the case in medieval Europe’s focus on knights. To the contrary, they may more resemble a cybernetic “people’s war“, characterized by the networking of hi-tech and guerrilla forces and tactics, strict political control, and cybernetic planning to optimize the resource flows and output of a mobilized war economy.

Women will play much bigger roles. They are physically, on average, perhaps 40-50% weaker than men, so in the age of cold steel they would have been of limited use on a battlefield (plus traditional social mores stood against their active involvement). Today, however, they account for around 10% of the personnel of many of the most advanced armies (albeit mostly in support roles). In WW2, there were around 2 support personnel for every fighter in the US Army in the European theatre. Obviously, there is no reason women cannot be of use in that sphere. They can also participate in the new realm of information war – intelligence analysis, planning, cyberwar, etc.

Another thing is that the premium of physical strength itself is in decline. Equipment is continuously getting lighter. Exoskeletons will make the issue immaterial. Although physically weaker, women are probably no worse and perhaps better than men at aiming and shooting, if Soviet female snipers in WW2 are anything to go by. As such, the next total war will probably see the mass mobilization of women, including for front-line duty. Of course, there remain entrenched social attitudes and men’s proclivity to protecting women. Hence, battalions and lower are unlikely to go mixed. Involving women in such a way will not, of course, guarantee victory; but states which effectively exploit womanpower as well as manpower will somewhat increase their chances of winning.

As noted above, production in a future total war is going to be massive and on a scale dwarfing that seen in the WW2 (when industrial output by volume was about three to four times lower than even today). However, the industrial base is going to become much more vulnerable to hostile disruption and destruction. Massed attacks of hypersonic global nuclear bombers may be able to evade missile defences and drop their deadly nuclear payloads on major industrial concentrations. Ekranoplans can fly close to the enemy coastline and launch cruise missiles at harbors. Likewise, missile defence may not be fully effective against SLBMs.

It is a myth that nuclear war will lead to the extinction of the human race or even the collapse of civilization.

A good civil defense system (blast shelters underneath municipal buildings, grain stockpiles, urban metro systems, widespread EMP hardening, widespread distribution of Geiger counters & potassium iodide pills, prewar planning, dispersed machine tool stockpiles, air raid / missile strike warning sirens, etc) will vastly improve the survivability of a population and enhance the speed and scope of its postwar recovery. A good example of a prepared society is modern Switzerland, which has a nuclear shelter in almost every building, and to a lesser extent the late Soviet Union. In conjunction with an advanced ABM and SAM system, a society with a good civil defense system is probably capable of surviving, and fighting, a prolonged nuclear total war.

In WW2, bombing significantly disrupted Germany’s war production, both by outright destruction and by forcing production to move to underground, dispersed factories. In modern total war, both sides will thus force the other to curtail their war production. Tragically, the distinction between civilians and military will become even more blurred than in WW2. Perhaps it will vanish altogether.

In the prelude to war, special ops will be carried out on enemy territory. WMD may be smuggled into the nation’s major cities and political centers, so as to execute decapitating strikes at the outset of hostilities. Terrorism will whip up an atmosphere of panic and divert attention from real intentions. In general espionage activities and “maskirovka” will play a more important role than in previous conflicts. War will be waged on many fronts – not only conventional and strategic, but informational, psychotronic, assymetric (involving use of WMD), etc.

One of the most intriguing prospects is climate war. By the 2020′s, the nations of the world will realize that there is no way they can prevent runaway climate change through global emissions reductions, and so geoengineering research will be massively stepped up. Many insights as to how the change the weather and climate will be gained, and it will doubtlessly be adaptable to military purposes. Artificial droughts; regional dimming; triggering of submarine slides (causing tsunamis) and catastrophic release of ocean methane hydrates; geo-techtonic disasters; … all these and more may be exploited. From the book Unrestricted Warfare (see here for html excerpts) by PLA colonels Qiao Liang and Wang Xiangsui:

Ecological war refers to a new type of non-military warfare in which modern technology is employed to influence the natural state of rivers, oceans, the crust of the earth, the polar ice sheets, the air circulating in the atmosphere, and the ozone layer. By methods such as causing earthquakes and altering precipitation patterns, the atmospheric temperature, the composition of the atmosphere, sea level height, and sunshine patterns, the earth’s physical environment is damaged or an alternate local ecology is created. Perhaps before very long, a man-made El Nino or La Nina effect will become yet another kind of superweapon in the hands of certain nations and/or non-state organizations. It is more likely that a non-state organization will become the prime initiator of ecological war, because of its terrorist nature, because it feels it has no responsibility to the people or to the society at large, and because non-state organizations have consistently demonstrated that they unwilling to play by the rules of the game. Moreover, since the global ecological environment will frequently be on the borderline of catastrophe as nations strive for the most rapid development possible, there is a real danger that the slightest increase or decrease in any variable would be enough to touch off an ecological holocaust.

Finally, there’s also chemical and biological warfare. Their effectiveness is very uncertain, since they have not been widely used in anger (especially in recent decades). Chemical munitions have historically been mostly ineffective, mostly just a psychological weapon, though the most recent generations, novichok nerve agents delived by “binary munitions”, are an unknown quantity.

Potentially far more devastating than chemical weapons, maybe even nuclear weapons, are biological weapons. And you no longer even need a large state-funded efforts like Biopreparat to create lethal biological agents; according to Paul Boutin, just a DNA synthesizer and a few spare millions $ will do. Since bioweapons have the annoying quality that they can eventually “blow back” onto your populations and armies, it is thought that the main threat would come from millennarian terrorist movements. At the moment the world is every bit as vulnerable to biowar / bioterror / bioerror, as it is to a new flu pandemic. Not surprisingly, the main state-backed biowar efforts no longer relate to weaponization, but to biodefense.

Visioning Future War

Another way of imaging future war. Linear, infantry wars fought with rifle armies resembled checkers – relatively simple, one-dimensional, almost intuitive. The “combined arms” / 3rd-generation warfare that saw its apogee in WW2 and Cold War planning for WW3 on the plains of Germany resembled chess – one had to know how to use exploit time and space effectively with a variety of different units (infantry, mechanized, armored, air) to effect critical breakthroughts, encircle enemy units to enable for defeat in detail, and to know how to defend in depth. All of these are of course major elements in chess.

Future iWar is going to be like the Chinese game go - which despite the relative uniformity of platforms / pieces, is in practice far, far more complex than chess (computers aren’t advanced enough to “brute force” win in the game of go, unlike in chess, due to the sheer number of possibilities; skill is based on pattern recognition). It is characterized by extreme dispersion and inter-meshing of allied and enemy forces; strong point defences (see “iron phalanx”) with tenuous lines holding them together that are vulnerable to concerted assault; extreme mobility; and catastrophic bouts of attrition when large groups are surrounded and captured (equivalent to asymmetric attacks that disable large networks). No “King” that you have to defend at all costs because of the networked aspects; each unit is its own platform.

Responses to Criticisms

1. But we are in the era of globalization, spreading democracy, and world peace!

This won’t last due to the coming collapse of Pax Americana (the current global order founded on cheap oil, globalization, international rule of law, etc, and guaranteed by the US military / NATO), which will usher in the age of scarcity industrialism / the world without the West (characterized by economic statism, Realpolitik, resource nationalism, mercantile trade relations, etc).

Though on paper Russia’s military spending is only 4% of US GDP, in reality hidden subsidies, “structural militarization”, black budgets, etc, indicate that more like 15-20% of its techno-industrial potential is geared towards defense (20% of manufacturing output are armaments, 75% of Russian R&D has defense applications). In the US, real military spending is closer to 10% rather than the headline 5%. The figure is probably similar for China.

2. Given how much you talk about peak oil and collapse, what makes you think all these cool military technologies will ever be developed?

However, there are still plenty of unconventional gas reserves (coal seam gas, shale gas) and coal that will be able to sustain industrial civilization for another generation. (Of course by the 2030-50 period there will appear incredible stresses on the system if 1) climate change is bad and geoengineering is not attempted or is unsuccessful, and / or 2) if global industrial civilization had not managed to transition to a non-hydrocarbons dependent development regime). So whereas the US global empire will soon go, the global industrial system still has a substantial life ahead of it.

This time period, c.2010-2030/2050, will be characterized by an apolar, anarchic international system based on Realpolitik and resource nationalism. The three most powerful blocs are going to be the China-East Asia bloc, the America-Atlanticist bloc, and the Russia-Eurasian bloc. In times of stress and international competition, resources are diverted to the military sector and the military-industrial complex, including R&D. Since armed forces are the coercive foundations upon which any state is kept together and preserved, they are going to get preferential resources from the state they serve up until the very end of said state. This will be occuring in tandem with the continuation of the explosion in computer power, electronic networks, AI, biotechnology, nanotechnology, and robotics.

BTW, the process of ramping up the share of productive resources dedicated to the military sector has been rising at the global level since around 2000, bringing to an end the post-Cold War “peace dividend”. Despite commitments in Iraq and Afghanistan, the US has accelerated the development of BMD under Bush; after 20 years of declining military spending as a percentage of GDP to free up resources for economic development, Chinese military spending began to grow faster than GDP; and Russia has revamped military spending from its post-Soviet nadir, is reforming its army and beginning fifth-generation rearmament, and plans to resurrect high-volume military production from 2011.

3. The range of technological, doctrinal, and social changes you describe as regards a total war is so radical that I cannot imagine it happening.

The citizen, soldier, and general of 1914 could have no way of knowing that in another half-century, the world of frontal infantry advances and quick, clean campaigns would be transformed into battles of industrial production, mass mobilization, “total war”, combined arms tactics, Blitzkrieg (infiltration-envelopment-annihilation), defense in depth, strategic bombers, ICBM and SSBN forces, etc.

Likewise, the early Cold War era strategist would have had to be very imaginative to envision nuclear planning losing its primacy, with the focus shifting from planning for massive tank battles on the Central European Plain, to today’s world of precision-guided munitions, stealth aircraft, the RMA, 4GW, and cyberwar or iWar.

The appearance of limits to growth, together with continuing developments in informatics and military technology, will lead to equally drastic changes in the nature of future war in the next few decades.

4. I’m a bit confused on the chronology, this essay is rather rambling. Can you please clarify?

Yes, I agree it’s rambling. Sorry, lots of ideas, not enough time or discipline. I’ll try to clarify and summarize in chronological order.

2010′s: Just as the US is in the midst of developing next-generation weaponry (scramjets, laser BMD) and finalizing the foundations for its global BMD system, the collapse of Pax Americana, economic crisis, and political instability will bring much of its military-industrial activities into dormancy (as happened in 1990′s Russia). Russia and China continue their military modernizations uninterrupted, reaching the US fifth-generation level of 2005-2010 by 2020. In particular, China will have then acquired a real blue water navy, which will by then be larger and newer than the US Navy. Many middle-rank Great Powers acquire advanced, assymetric, “area denial” weaponry (anti-ship missiles, supercavitating torpedoes, silent diesel submarines, UAV’s, drones). With the global US empire now a shell of its former self, nuclear proliferation will increase.

2020′s: The US will have more or less stabilized from its fall by now, and will resume where it left off in the early 2010′s. Drawing on R&D work it did not have the opportunity to previously actualize for lack of funds, it will resume upgrading its now downsized military forces (Future Force Warrior, all-electric ships, scramjets, laser ABM shields, railguns). However, by now China will be a real peer competitor and increasingly ascendant, even in qualitative terms. The spread of neo-colonialism and resource wars will intensify, the globalized world of yesteryear having dissolved into apolar anarchy and regional blocs centered around Great Powers (e.g. China, the US, Russia, France, Turkey, Brazil, Germany, India). Due to the stagnation of its military-industrial complex, Russia gets “locked in” to the fifth-generation paradigm and does not advance much farther than perfections of what were essentially late-Soviet systems, like the S-500, PAK FA, Borei, and T-90; adequate for dominating the Near Abroad, but no longer enough to go toe-to-toe with China or the US. By this time, both China and the US will have fully brought online mature ABM technologies based on kinetic interception. There are moves to move some C&C functions into deep space, black projects are launched in geowar and psychotronic warfare, and serious research begins on biomechanical, nanotechnological, and autonomous AI applications to military affairs.

2030′s: The increasing power and prevalence of cybernetic technology will enable unprecedented levels of wartime mobilization. The efforts initiated in the 2020′s are beginning to pay off, with the development of very powerful laser ABM systems that drastically reduce the value of nuclear arsenals (by now, only massed swarm attacks of hypersonic bombers have a chance), as well as the perfection of the Future Force Warrior, etc. Perhaps by this time military forces will be transitioning from reliance on hydrocarbons to space-based solar power and electric batteries: certainly China will be capable of an industrial-scale buildup in space, and the US-Atlanticist bloc too if it has the political will. Developments in biodefense will massively decrease the time needed to prepare vaccines against biological agents. The results of the exotic research projects of the 2020′s will begin to be implemented, for instance, biomechanical constructs to serve as resilient, versatile and autonomous platforms for energy and kinetic weapons; “nanodust” sensors; new technologies for waging ecological warfare; enhanced “smart”, EMP, and fuel-air munitions. These may shift the advantage back to the offensive.

2040′s: Probably the make or break decade. By now either humanity has managed to avert collapse (through technological singularity or some kind of “ecotechnic transition“), or it will be approaching collapse with no salvation in sight. Perhaps collapse will be preceded or accompanied by a last war of industrial civilization. One in which the weapons, doctrines, and social constructs of future war will be exploited for the first and last time.

Comments

  1. I’m sorry for my ignorance of the subject, but I just cannot visualise your projects, Mr Karlin.

    1) You speak of ICBMs as becoming obsolete due to fast growing BMDs, but surely ICBMs will also evolve into faster, more accurate, more evasive weapons?

    2) I am skeptical of these ‘ultra-modern’ weapon systems ( Future warrior, laser gunships etc. ) They are difficult to handle, will require more money, more human capital, more resources. They will be difficult to develop, let alone manufacture in large enough quantities to re-equip the armed forces. Surely the ‘peak oil and collapse’ you speak of will come much sooner.

    3) This electronic cocoon is highly complex. I cannot imagine the consequences of mistakes and mishaps which will undoubtedly occur whilst wielding it ( they happen with RPG-7s, I’m sure they can happen with state-of-the-art plasma shields ).

    4) What will be the consequence of losing such highly modernised equipment on the battlefield? If they are all inter-connected, surely managing your secret information and protecting it from the ”information war” will become a nightmare!

    5) If Russia, according to you, will continue to develop and increase military spending, surely modernising the military-industrial complex will be top priority?

    I’m sorry I cannot back up my arguments with serious facts, Mr Karlin, this is just how I feel.

    • Re-1. ICBM’s by definition follow a ballistic trajectory and accuracy has not been a major issue since the 1980′s. Improving evasion is more promising, but it involves substantial trade-offs in throw-weight, and furthermore does not cardinally change the balance.

      Re-2. But weapons always had a tendency to become more complex, it’s just that the benefits outweighed the costs. In particular, laser weaponry will do away with the need to have large munitions compartments.

      Peak oil will not be coincident with industrial collapse. Industrialism at the global level can be sustained with gas and coal for another generation, and one thing we can be quite sure about is that the military-industrial complex will be one of the state’s most favored sectors for distributing stagnating or falling revenues.

      Re-3. As mentioned, there will be other systems (railguns, current GBI missiles, etc) installed for redundancy.

      Re-4. Just because a shell can blow up within an artillery piece didn’t stop people from using them. The weaknesses of connections can be countered by improving resilience should units lose access to them. As I mentioned, there needs to be an optimal balance between hi-tech and “guerrilla” philosophies of war.

      “Secret” information can be managed by 1) restricting it to special channels of communication only open to people with the correct security clearance, 2) encrypting data transmissions (e.g. quantum cryptography is 100% secure and can be transmitted via optic fibre), and 3) a “cybernetic totalitarianism” will have formidable surveillance, database, and pattern recognition capabilities to facilitate the rooting out of spies and traitors.

      Re-5. Yes it will be and to some extent it is happening now. But spending is still well below Soviet levels and more importantly the MIC no longer has privileged access to material, technical, and managerial resources. Quite simply, most technically-competent young Russians prefer the much higher salaries of private business to the lower salaries, with some perks and stability, offered by the MIC. The old designers from the Soviet era are retiring, they are not being replaced, and in general it seems that Russia’s development of the RMA and of future-generation weapons systems lags NATO by a huge margin.

  2. georgesdelatour says:

    Which Horseman Of The Apocalypse is it today? – Ahh, war :)

  3. georgesdelatour says:

    A few random thoughts:

    1. I can’t see a direct “resource war” between the US and China any time soon unless one side sets out to starve the other of some vital resource. Even if resources are declining, the US and China will be powerful enough to get big shares of what’s left. It’s other places, like Europe and Africa, that will get squeezed first. So I think a direct US – China confrontation is still some way off.

    2. The US military is looking into green algae as an alternative fuel source. I have this funny feeling the real push for more “green” policies isn’t going to come from the tree-huggers and Friends Of The Earth, but from the generals.

    3. Iraq and Afghanistan show how highly motivated low-tech opponents can put up quite a fight. The US never caught Bin Laden, and if he’s still alive, I’m sure he never ever uses a cellphone or email. Many studies have criticised US espionage for relying too much on electronic methods, when what they really need are good old fashioned human spies. A good lesson here is Northern Ireland. At the start of the IRA campaign in the 1970s, British intelligence was very poor. By the time the IRA abandoned armed force, it’s reckoned the British had spies in every IRA meeting. Interestingly China is putting huge resources into spying on the US, principally to steal technology.

    4. I still think motivation is a massive factor in military outcomes. North Vietnam defeated the US with mostly low-tech weapons, partly because it was prepared to suffer massively higher casualties (1.1 million) than the US army was (60,000). I think, in a US-China war not directly threatening the home territory of either country, I’d bet on Chinese soldiers being more motivated, though I have no evidence for this.

    • Agreed on first two. Caveat about points 3-4 is that current the neo-colonial powers are hamstrung by restrictive rules of engagement and laws of war. In the age of scarcity industrialism, I expect that concern for human rights will dissipate away over time. Modern armies should in principle have little difficulty utterly wiping out low-tech guerrilla resistance once the above legal and ethical restrictions are lifted.

  4. With the reservations previously stated on your post “War is Reality”, and the healthy amount of skepticism I give to any projection claiming what reality will be like more than 15 years out, this is a pretty smart pretty good piece.

  5. Anatoly, IMO it is rather a technological fantasy about possible future world than a feasible scenario of future development.

    We are going to run out of money (and no, printing press won’t do…) and fail on countless fronts, before any such systems are actually developed, even if possible in principle (by laws of physics).

    So for example:
    1. Constellation Project (revisiting Moon by Americans) have been scrapped.
    2. Funds for Space Shuttle replacement are canceled.
    3. Further work on F-22 Raptor is canceled and cheaper, lower tech crafts are under development.
    4. Supersonic passenger travel have been terminated.

    We are not heading towards high tech fantasy world.
    We are instead heading towards global bankruptcy, disassembling major military forces in scenario comparable with chaotic collapse of Soviet conventional forces.

    All your war dreams may well fulfill themselves as a relatively short global war with significant nuclear exchange which is going to leave ailing technological civilization dysfunctional for good.

    • The US is running out of money. Not so much China. And due to natural technological progression, the costs of these systems is going to fall over the years, especially for those in which computers and electronics make up the bulk of the cost (Moore’s Law).

      The four examples you cite are all hi-tech white elephants. Having humans go to the Moon again is totally pointless. There are cheaper and more effective ways of blasting payloads space than using a Space Shuttle (e.g. even old-school rockets are better, though the holy grail is a space elevator). F-22 in favor of cheaper craft? – completely rational development, drones are the future. I don’t envision future warfare as a robotized one fought exclusively with very expensive toys; it will be one in which mass-produced, cheap platforms will play an important role since their effective strength will be multiplied by being networked and made intelligent.

  6. I have to comment on the BMD.
    There’s a significant problem with your description. First you need to ask yourself how much a dollar gives you in terms of nuclear warheads or missile defenses. If the former is more cost-effective than the latter, then BMD as currently projected is doomed. There are many strategies that could be used to circumvent the shield: saturation obviously with MIRVs and MARVs, cruise missiles, low-trajectory missiles launched from submarines, hypersonic missiles, etc. The only limit seems to be the human imagination.
    The mere possibility that a significant number of warheads will be able to reach their target will make deterrence succeed.

    • The question of costs is a valid and important one. Beyond the initial, high, fixed costs of setting up the Missile Defense Ground Environment (MDGE), the marginal costs of adding additional interceptor missiles become very low. Nuclear warhead-tipped ballistic missiles are much more relatively expensive, since the production of highly-enriched uranium is a much more complex enterprise and quantities are constrained by the size of the national nuclear infrastructure. (Also, as I noted, further down the line there may emerge laser-based missile defenses, which will make the whole debate – to the extent there is one even today – about relative defensive-offensive costs entirely moot).

      I agree that there are counter-measures and that nukes will remain an important factor (the nukes per se will remain as valuable as ever, the delivery systems will have to be reworked). I already noted that SLBM’s, cruise missiles, and hypersonic drones will play a bigger role. I would also note that you can’t really combine MIRV’s and MARV’s. To implement the latter, i.e. the ability to (slightly!) change course at the terminal stage, the increase in weight precludes anything more than a single warhead, i.e. no MIRV’s. As for MIRV’s, warheads only separate from the bus at the post-apogee phase at the earliest, so such ICBM’s would still be vulnerable to mid-course interceptors. Hence SSBN’s, with their ability to edge near a coastline and shower the enemy with dozens of warheads on depressed ballistic trajectories within a few minutes, and the bomber drones with their maneuverability, are most likely the future of nuclear warfare.

      This deterrence succeeds in an age of abundance industrialism, when all countries know that growth can be attained through peaceful, market-based means of resource acquisition, making nuclear warfare very counterproductive. These calculations may change in an age when the survival of any national industrial system becomes critically dependent on a shrinking stock of resources that are competed over.

  7. Anonymous says:

    Something has just struck me re-reading your article. You say that Russia will note be able to go toe-to-toe with China by late 20′s, early 30′s but yet you firmly believe that USA will suffer political instability and an economic crisis. What effect would this have on the large Russian scientist population of USA? If these hardships last for more or less a decade ( as you yourself believe ), they will lead to reverse brain drain where Russian and Chinese scientists return, creating an equilibrium.

    Just my two copecks.

    • I think many of the Chinese scientists will return. Most migrated in the 2000′s, retain close ties with their original homeland, and have patriotic views. China has been rising at a very rapid pace throughout their entire careers.

      I doubt that will be the case for Russian scientists. Most migrated in the early to mid 1990′s, in the aftermath of the Soviet collapse and huge disillusionment with Russia. Many of them view Russia with outright bitterness and have a diasporic mentality. Those who didn’t adjust to Western life have already gone back; those that have, usually intend to remain permanently.

      • Anonymous says:

        I agree with your estimate of 25%. However, I think those coming back would bring back valuable knowledge, which could lead to Russia catching up to USA in mid 10′s, earlier than the 20′s you argue.

        I disagree with your ‘locking-in’ view of things. The 37 billion allocated for 2010 is 1480% increase since Yeltsin’s 2.6$ billion allocated in 96. With the economy projected to grow, this sum will only increase.

        As a side note, I think that a financial collapse of USA would disrupt the brain flow coming on for a long time, severly hindering their revival by
        20′s.

  8. Interestingly, tests of laser weapons (or laser applications which demonstrate a weaponization potential) still are conducted under strictly controlled conditions, and make little allowance for actual atmospheric conditions. Lasers, like any form of energy, suffer drag and attenuation from the atmosphere they pass through. This forms the basis for the theory that a ground-based Low-Earth Orbit (LEO) laser weapon will not work, owing to continuous ionization of the beam as it passes through moisture, dust and other “impurities”, such that it falls below Mean Hull Penetration Level (MHPL). Compensation for this effect has taken the form of massive power, but we see that this, too, has its limitations, while there remains a trade-off in physical size.

    Initial tests of infrared (IR) homing missile systems inspired similar jubilation, until they proved to be significantly affected by rain and fog. Making them more sensitive simply caused its own subset of problems, and IR homing remains a limited technology with the “magic bullet” not yet found.

    Evading detection always has most of the advantage on its side; when you know what the enemy is going to be shooting at you or looking for you with, determine what it uses to search and ensure you are not what it sees. Laser weapons offer a great deal of potential as a shoot-down weapon, but they’re not a seeker. We still rely on radar for that, and there’s never been a radar that can’t be fooled. Even when the radar has found you, prediction circuitry takes over which updates the target where it expects it to be based on maintaining direction and speed. Any errors introduced that way force it into reacquisition. Of course, as you correctly point out, a ballistic missile is not agile by nature, and would be unlikely execute evasive maneuvering. In that case, large numbers of cheap ballistic projectiles that contain no warhead or midcourse guidance package would be a valid option – slightly faster than the actual missiles and launched so as to appear earlier, sucking in the defense systems and exhausting them. It might only work once, but it might only need to.

  9. sinotibetan says:

    Dear yalensis and Anatoly,
    Sorry to post something totally not relevant at all to the above topic. I’ve tried to post into marknesop’s blog but failed many times. I believe he has blocked me from his blog. ;)
    Anyway, yalensis – regarding the ‘satire’ on Medvedev – and the recent anti-Putin ‘movement’ in the EU: I do hope I am completely wrong about Medvedev. Even if I’m right, I do believe Putin can handle the situation well.
    I have a refutation(nearly 4 pages!) on Giuseppe’s points and even have websites of ex-Muslims, mostly Middle Eastern in origin, who do read and write and speak Arabic, who are critical on Islam – especially its political ideology – but could not post it in marknesop’s blog. Would be appreciative if you could convey this. Don’t worry, I won’t post those refutations here.
    I would be also grateful if you could send my best wishes to Mikhail and thanks for his many interesting and enlightening posts. Also for someone who gave some ‘Jew-friendly’ and ‘Christian-friendly’ Quranic ayats, I’d be also grateful if you’d convey that the principle of abrogation in Islam nullifies those verses.
    You are of course, under no obligation, to convey those messages but would be grateful if you do. I also hope that Anatoly will allow this final post from me , which, he being so tolerant with my idiosyncrasies, I believe, would do so.
    I won’t be commenting in this blog or any of the ‘Russophilia’ blogs anymore – though I think I’ll read these posts by you guys on and off. To yalensis and Anatoly – thank you for tolerating me. Especially to yalensis, I love your philosophical musings though we don’t agree on some fundamental things! Where I disagree with anyone, I hope none take it personally! And I wish all the best to Russia!

    sinotibetan

    • As you will see if you go there, your comments went into the spam filter, from which they were retrieved. I have pointed out before this that lengthy posts (such as yours, which is almost a dissertation) which contain a lot of links are often perceived as spam by the filter program, which uses criteria into which I have no input. Anatoly has been an occasional victim as well. So far I have not had to censor anyone, provided they actually had something to say – besides, “Hey, let me tell you how you can get a bigger dick through inexpensive vitamin supplements” or a similar sales pitch – and could back it up with reasonably believable sources (Wikipedia sometimes has good presentations and even solid information, but it is subject to the bias of the contributor and I don’t recommend it unless you can’t find the information in a better source).

      I thought the Chinese were supposed to be a patient people. Having to wait overnight to be heard is, I submit, not a particularly trying ordeal. Even Boris Nemtsov managed to stay in jail for 15 days without crying too much. Take your finger off the “victim” button for a minute, and things will clear right up, I promise.

  10. I doubt that lasers are the coming superweapon simply because you have to follow the target and range is limited in the atmosphere. However, they can rock in space. If you want to weaponize light you better use a large mirror in space that can be turned on and off and change position. One soultion would be using mercury on a rotating surface to form the reflecting mirror and afterwards shut it off again and go into hiding. Such space mirrors can also help solve the civilian energy supply problem day and night by burning down in desert on solar energy using installations for electricity production.
    Crude ballistic missiles will likely disappear because they’ll be the first a BMD can catch and thus giving poor nations less chances to fight back. But stratospheric airships with a transparent ballon and stealth gliders would be a convenient replacement because these gliders can be quite resilent targets that are difficult to locate. and another opinion added.

  11. Or perhaps we’ll just get along in relative peace, we don’t need weapons to survive, just a small measure of faith and immunity to the sort of paranoia you seem to be prey to.

    Imagine this world without humans.

    A rather lovely place, teeming with life.

    That is the way of the world.

    let it be.

Leave a Reply